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Abstract – An approach is proposed for engineering tuning 

of Smith predictor with a dynamic object from high order. 

There is a proposal to solve the problem by solving the 

characteristic equation (controller-compensator). As a result 

of the high order dynamic system analysis, the tuning 

parameters of the Smith predictor are calculated. The 

transitionаl processes of the system (controller-compensator) 

are dealt with by assignment. For the transitional process by 

assignment, overshoot 16,  2%   occurs. If a comparison of the 

overshoot of the transitional process by assignment  (obtained 

in simulation) is made, 0, 1% inaccuracy is observed in theory. 

Therefore, the proposed approach for engineering tuning of 

Smith predictor with a high order dynamic object is suitable 

for use in high order dynamic systems analysis. 
 

Keywords – Smith Predictor, Tuning, Dynamic System, 

High Order Object, Transfer Function. 
 

I. INTRODUCTION 
 

There is a time-delay (pure or transient) in each automatic 

control system, which can be small or significant and it 

leads to a deterioration of the control system. This is a major 

cause of poor quality control, which can lead to major 

overshoot and, in some cases, to unstable control system. 

PID-controllers work successfully when the relative delay 

of the object does not exceed one. In many cases, however, 

it exceeds a unit, so special delay compensators (Smith 

Predictor) have been developed. The basic idea behind this 

development is how to set up a controller operating with a 

delayed object can be reduced to a controller setting for an 

object without delay. This is possible if a delayed object 

model is incorporated into the master controller structure so 

the controller can be "misled" to operate as if the object was 

not delayed. 
 

II. PROBLEMS WITH THE TUNING OF SMITH 

PREDICTOR IN HIGH ORDER SYSTEMS 
 

Since the implementation of a time-delay unit with 

analogue means is very difficult, Smith's controller has not 

found a practical application right after publishing the idea. 

With the introduction of microprocessor controllers, its 

wide use is also possible. This example shows the 

limitations of PI-control for processes with long dead time 

and illustrates the benefits of a control strategy called “Smit 

Predictor”. Note that the delay is more than twice the time 

constant. This model is representative of many chemical 

processes. The performance of the PI-controller is severely 

limited by the long dead time. This is because the PI-

controller has no knowledge of the dead time and reacts too 

“impatiently” when the actual output y does not match the 

desired set point ysp. Everyone has experienced a similar 

phenomenon in showers where the water temperature takes 

a long time to adjust. There, impatience typically leads to 

alternate scolding by burning hot and freezing cold water. 

A better strategy consists of waiting for a change in 

temperature setting to take effect before making further 

adjustments. And once we have learned what knob setting 

delivers our favorite temperature, we can get the right 

temperature in just the time it takes the shower to react. This 

“optimal” control strategy is the basic idea behind the Smith 

Predictor scheme. With the help of the Smith Predictor 

control structure we are able to increase the open-loop 

bandwidth to achieve faster response and increase the phase 

margin to reduce the overshoot. The Smith Predictor 

provides much faster response with no overshoot. The 

difference is also visiable in the frequency domain by 

plotting the closed loop Bode response from ysp to y. Note 

the higher bandwidth for the Smith Predictor [14]. 
 

III. POSSIBLE OPTIONS FOR SOLUTION OF THE 

ASSIGNED TASK 
 

Many papers [1]-[14] have proposed a number of options 

to improve the control system with a Smith controller or to 

solve specific problems. The principal controller typically 

implements a proportional-integral (PI) control law, 

including an control object model. Here, a differential 

component is not necessary because predictions are made 

by the new time-delay compensation structure. 

One of the possible ways to facilitate the setting-up of the 

Smith controller is known as a predictive PI-controller 

(PPI) and consists of the following. The controller in the 

main loop realizes a PI-algorithm, and the control object 

model in the controller is a aperiodic unit and a time-delay 

unit [15]. 

The purpose of this paper is to offer an approach for 

engineering tuning of Smith predictor with a dynamic 

object from high order by solving the characteristic 

equation of the system (controller - compensator). 
 

IV. PROPOSAL FOR SOLVING THE PROBLEM BY 

SOLVING THE CHARACTERISTIC EQUATION 
 

Figure 1 shows the structural diagram of a ACS 

comprising a high order control object and a Smith 

predictor. 

In the structure under consideration, the controller is 

enclosed by a negative feedback in which the compensator 

K is also included. The transfer function of the closed 

system with respect to the reference is: 
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where )(sWc
- is the transfer function of the controller; 

)(sWco
- is the transfer function of the control object; 

)(sWk
- is the transfer function of the compensator. 

The transfer function of the compensator has the kind: 

 

)1).(()( sesWsW  ak
. 

 

For a more precise model of the control object in the 

controller a second order control object is chosen (with two 

aperiodic link), ie. 
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It is known that the expression in the denominator 

)(sWsp
 defines the characteristic equation of the system 

and the presence of time-delay deteriorates the stability. For 

this purpose additional feedback is introduced so as to 

eliminate the impact ot time-delay on the stability of the 

system, i.e. 
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Therefore, it is necessary to  have a model of the object 

in order to put into practice Smith's controller. The transient  

function of the Smith’s controller will be the type 
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Fig. 1. A system with a high order control object and a 

Smith predictor 

 

The transfer function of the loop system (controller - 

compensator) without time-delay (fig. 1), when working 

under set point is: 
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The transfer function of the loop system (controller - 

compensator) without time-delay (fig. 1), in case of 

disturbance is: 
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We propose that the analysis of the system (controller - 

compensator) be carried out with a successively connected 

oscillating and aperiodic link, i. 
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Assuming that the time constant of the aperiodic link 

(first order low pass filter) is equal to the time constant of 

the oscillating link, i. 
0TT   is obtained 
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For the polynomial in the denominator of expression (4) 

the characteristic equation is obtained 
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If we equal the corresponding coefficients in front of s3, 

s2 etc.from the characteristic equation (5) to the coefficients 

of s3, s2 etc. of the polynomial in the denominator of 

expression (1), the transfer function of the closed system 

regarding the assignment will have the final appearance 
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where 1spk  is called a coefficent of the system 

assignment. 

The transmission function of the closed disturbance 

system will have the final appearance 
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called the system disturbance factor. 

By comparing the coefficients in front of the 

corresponding degrees of s in the polynomials of 

expressions (1) and (6), dependencies between the 

parameters of the transition process and the parameters of 

the system can be determined. Equivalent time constant is 
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Similarly, the attenuation coefficient   is determined. 

For it two expressions of s2 and s of (6) are obtained, ie. 

The first expression that can be determined   is 
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If we only express   we obtained  
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The second expression from which can be determined   

is 
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If we express only   it is obtained 
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If the expressions (9) and (11) are divided into one 

another, it is obtained 
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If the expressions (10) and (12) are equal to one another, 

i. 
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and then simplified, an expression of the type (13) is 

obtained. This confirms that the expressions (8) and (13) are 

equal, i 
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If an expression (15) is solved regarding the time cons- 

-tant of integration 
iT , it is obtained 
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The proportionality coefficient of the controller 
pk  can 

be determined by an expression (11), ie.   

 

   akTT

T
k

i

i
p




012
                                       (17) 

 

Example: The transitional process of the control object 

is of high order and is described with the following transfer 

function [17]. 
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The following algorithm performs the following: 

1. Take the transitional process of the control object that is 

smooth and normalizing. 

2. Since the control object model is of second order – fig. 

2 (two consecutively connected aperiodic links with 

equal time constants) - the transitional characteristic is 

monotone with a transient delay, it is chosen to 

approximate the method of Ormans [16]. After the 

approximation, it is determined: 1,ak   

125,132  aTT1a sec and 5,64a sec. 

 

 
Fig. 2. Transitional process of the control object. 

 

3. By the expressions (16) and (17), the tuning parameters 

of the PI-controller are calculated using the iteration 

procedure. 

First, calculate the value of 
pk , at a set value of

aiT 3

, where a  
is determined after a Cupfmuler approximation 
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Finally 
iT  is calculated, if its value is close to the one 

above, the calculation procedure is terminated. 
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If the value of 
iT  differs greatly from the set above, the 

calculation procedure starts from the beginning by selecting 

a value 
iT , of so to minimize the difference between the set 

value and the value obtained. 

4. By the expression (12) the damping factor   is 

calculated and approximately what is the value of the 

overshoot σ from [15] 
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5. Determine the maximum dynamic deviation 1y  in the 

expression given in [15] 
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6. If any of the above two parameters does not meet the 

prerequisites for quality, adjust the controller. 

It is compared how an ordinary PI controller and two 

Smiths’ controllers would handle with this object [17]. 

The PI controller (PI) setting is made using the Astrom-

Hagglung formulas [17] (at model parameter values.  
 

1,ak   6,19aT sec and 72a sec.): 

15,0*15,0  ap kk  

sec8,28*4,0  aiT  . 

 

The Smith’s Controller setting (Smith 2) in the model of 

the control object in the controller is a aperiodic link with 

time-delay [17] (at model parameter values 1ak , 

6,19aT sec and 72a sec.): 
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Setting the Smith’s controller (Smith 1) in the model of 

the control object in the controller from second order with 

time-delay (at model parameter values 1,ak   

125,132  aTT1a sec and 5,64a sec): 
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For the closed loop system with PI-controller it is seen 

that the process is quite slow with an adjustment time of 

about 800 seconds (with a precision of ± 2%). This is due 

to the low value of the controller coefficient kp. For the 

Smith’s controller system, it appears that the transitional 

process of the (Smith 1) is faster and better than that 

indicated by (Smith 2). Both transitional processes have a 

low adjustment time compared to the regular PI-controller. 

The small fluctuations in the process (Smith 2) are due to 

the inaccurate model of the control object. It can be seen 

that in the exact model of the control object (Smith 1) these 

fluctuations are missing. The simulation shown in fig. 3 

shows the advantages of the Smith controller in front of the 

conventional PI-controller in the case of system with a long 

timedelay. It should be noted that the use of a Smith 

controller makes sense only when the relative delay in the 

control object is greater than one. Otherwise, a well-tuned 

PID-controller would do just as successful, while being 

considerably evidential and simple in design. 

 

 
Fig. 3. Transitional  processes by assignment 

 

The transitional processes of the closed system (fig. 1) by 

assignment and by disturbance are shown in fig. 3. For the 

transitional process by assignment, overshoot 16,  2 %   

occurs. If a comparison of the overshoot of the transitional 

process by assignment (obtained in simulation) is made, 0, 

1% inaccuracy is observed in theory. Therefore, the 

proposed sub-process for engineering tuning of a Smith 

predictor with a dynamic object from high order is suitable 

for use in the analysis of high order dynamic systems. 
 

V. CONCLUSIONS 
 

An approach is proposed for engineering tuning of  Smith 

predictor with a dynamic object from high order. There is a 

proposal to solve the problem by solving the characteristic 

equation (controller-compensator). As a result of the 

analysis of high order dynamic system, the tuning 

parameters of the Smith predictor are calculated. 
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